Wednesday, August 29, 2012

X Statics mean median mode and Ogive MCQ

X Statics mean median mode and Ogive
MULTIPLE CHOICE QUESTIONS
1. If 35 is the upper limit of the class-interval of class-size 10, then the lower limit of the class-interval is :
(a) 20                                                               (b) 25
(c) 30                                                               (d) none of these
2. In the assumed mean method, if A is the assumed mean, than deviation dis :
(a) x+ A                                                        (b) x– A
 (c) A – xi                                                        (d) none of these]
3. Mode is:
(a) Middle most value (b) least frequent value (c) most frequent value (d) none of these
4. While computing mean of grouped data, we assume that the frequencies are :
(a) evenly distributed over all the classes       (b) centred at the class-marks of the classes
(c) centred at the upper limits of the classes   (d) centred at the lower limits of the classes
5. The curve drawn by taking upper limits along x-axis and cumulative frequency along y-axis is :
(a) frequency polygon                                      (b) more than ogive
(c) less than ogive                                           (d) none of these
6. For ‘more than ogive’ the x-axis represents :
(a) upper limits of class-intervals                    (b) mid-values of class-intervals
(c) lower limits of class-intervals                    (d) frequency
7. Ogive is the graph of :
(a) lower limits and frequency                        (b) upper limits and frequency
(c)lower/upper limits and cumulative frequency (d) none of these
8. The curve ‘less than ogive’ is always :
(a)ascending                                                    (b) descending
(c) sometimes ascending and sometimes descending (d) none of these
9. If mode = 80 and mean = 110, then the median is
(a)110                                                              (b)120
(c)100                                                              (d)90
10. The mean of the following data is : 45, 35, 20, 30, 15, 25, 40 :
(a) 15                                                               (b) 25
(c) 35                                                               (d) 30
11 . The mean and median of a data are 14 and 15 respectively. The value of mode is
 (a) 16                                                                           (b) 17
 (c) 13                                                               (d) 18
12 . For a given data with 50 observations the ‘less than ogive’ and the ‘more then ogive’ intersect at (15.5, 20). The median of the data is :
(a) 4.5                                                              (b) 20
(c) 50                                                               (d) 15.5
13. Which of the following is not a measure of central tendency ?
(a) Mean                                                          (b) Median
(c) Range                                                         (d) Mode
14. The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its :
(a)mean                                                           (b) median
 (c) mode                                                         (d) all the three above
15. The measures of central tendency which can’t be found graphically is
(a) mean                                                          (b) median
(c) mode                                                          (d) none of these

Tuesday, August 28, 2012

IX Maths Comprehensive Test Series Geometry Triangle SA-1



Ch: Triangle CBSE Exam Questions
Download File
Comprehensive Test Series Geometry SA-1
Download File

Sunday, August 19, 2012

Download X SAMPLE PAPERS Maths SA 1 (with Solution) 2012-2014

CLASS X  SAMPLE PAPERS  SCIENCE  SA 1 (with Solution) 2012-2014
 Source: kv1madurailibrary
CLASS X SAMPLE PAPERS Maths SA 1 (with Solution) 2012-2014
 Source: kv1madurailibrary


Tuesday, August 07, 2012

IX Assignments Maths:Heron’s Formula

Assignments Topic :  Heron’s Formula                            
1)    Find the area of the triangle whose sides are 13cm, 14cm and 15cm.
2)    Prove that the length of the altitude of an equilateral triangle of side ‘a’ is.√3/2a
3)    The sides of a triangular field are 120m, 160m & 200m. Find the cost of ploughing it at the cost of 25 paise per square m.
4)    The length of sides of a right angled triangle forming the right angle are  5x cm and (3x – 1) cm. If the area of the triangle is 60 cm2, find its all sides.
5)    Find the perimeter of an isosceles right angled triangle having area 200 cm2.
6)    Find the area of a quadrilateral ABCD in which AB = 3cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5cm
7)    A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26cm, 28cm and 30cm, and parallelogram stands on the base 28cm, find the height of the parallelogram.
8)    A field is in the shape of trapezium whose parallel sides are 25m and 10m. The non-parallel sides are 14m and 13m. Find its area.
9)    A rectangular has twice the area of square. The length of rectangle is 12 cm longer and the width is 8cm longer than the sides of the square. Find the area of the square.
10) The adjacent sides of a parallelogram are 125 mm and 62.5 mm. If one altitude of parallelogram is 0.025m, find the other altitude in cm.
11) The diagonals of a rhombus are whose 15 and 36 cm long. Find its perimeter.
12) Find the percent increase in the area of an equilateral triangle if its each of the side is doubled.
13) Find the area of an equilateral triangle whose each side is ‘a’.
14) Find the area of ABCD in which AB = 9m, BC = 40m, CD = 15m and AD = 28m and angle ABC is 90o.
15) The area of an equilateral triangle is 2√3cm2 . Find its perimeter.
16) Find the area of an isosceles triangle whose each of equal side is ‘a’ and the other side is ;b;.
17) Find the area of triangle two sides of which are 18cm and 10cm and perimeter is 42cm.
18) The sides of triangle are in the ratio of   12 : 17 : 25 and its perimeter is 540 cm. Find its area.
19) Find the area of an equilateral triangle whose each side is 30m.
20) Find the area of a triangle whose sides are 122m , 22m and 120m respectively.

Sunday, August 05, 2012

X Maths:Real Number : Edugain series practice paper

1) Show that 3√ 2 is irrational.

2) Prove that 3 + 2 √5 is irrational.

3) A sweet seller has 420 kaju barfis and 130 badam barfis. She wants to stack them in such a way that each stack has the same number, and they take up the least area of the tray. What is the maximum number of barfis that can be placed in each stack for this purpose?

4) Use Euclid’s division algorithm to find the HCF of : (i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255

5) Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.

6) An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march? Sol. Hints: Find the HCF of 616 and 32

7) Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m. [Hint : Let x be any positive integer then it is of the form 3q, 3q + 1 or 3q + 2. Now square each of these and show that they can be rewritten in the form 3m or 3m + 1.]


8) Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.

9) Consider the numbers 4n, where n is a natural number. Check whether there is any value of n for which 4n ends with the digit zero.

10) Find the LCM and HCF of 6 and 20 by the prime factorization method.

11) Find the HCF of 96 and 404 by the prime factorization method. Hence, find their LCM.

12) Find the HCF and LCM of 6, 72 and 120, using the prime factorization method.

13) Find the value of y if the HCF of 210 and 55 is expressible in the form 210 x 5 + 55y

14) Prove that no number of the type 4K + 2 can be a perfect square.

15) Express each number as a product of its prime factors:

(i) 140 (ii) 156 (iii) 3825 (iv) 5005 (v) 7429

You may also see
CBSE :10th Real Numbers Extra score Test paper

X Maths:Real Number Practice paper

1. Use Euclid’s division algorithm to find the HCF of 867 and 255

2. Show that every positive even integer is of the form 2q, and that every positive odd integer is of the form 2q + 1, where q is some integer.

3. Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9lm + 1 or 9m + 8.

4. Prove that 7 √5 is irrational.

5. Prove that √5 is irrational.

6. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?

7. Express 5005 as a product of its prime factors.

8. Find the LCM and HCF of 24, 36 and 72 by the prime factorization method.

9. Find the LCM and HCF of 96 and 404 by the prime factorization method

10. State whether 64/455 will have a terminating decimal expansion or a non-terminating repeating decimal

11. State whether15/ 1600 will have a terminating decimal expansion or a non-terminating repeating decimal.

12. Find the LCM and HCF of 510 and 92 and verify that LCM × HCF = product of the two numbers.

13. Use Euclid’s division algorithm to find the HCF of 196 and 38220 (3 marks)

14. Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m,9m + 1 or 9m + 8

15. Show that every positive odd integer is of the form 2q, and that every positive odd integer is of the form 2q + 1, where q is some integer

LinkWithin

Related Posts Plugin for WordPress, Blogger...