Monday, July 11, 2011

Maths class X : introduction to trigonometry notes

1. In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine

a. sin A, cos A

b. sin C, cos C
2.    Given 15 cot A = 8. Find sin A and sec A 

3.    If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

4.    In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

5.     State whether the following are true or false. Justify your answer. 


a.    The value of tan A is always less than 1..

b.    cos A is the abbreviation used for the cosecant of angle A.

c.    cot A is the product of cot and A

6.    Evaluate the following

a.    sin60° cos30° + sin30° cos 60°

b.    2tan245° + cos230° − sin260°

7.    State whether the following are true or false. Justify your answer.

a.    sin (A + B) = sin A + sin B

b.    The value of sinθ increases as θ increases

c.    The value of cos θ increases as θ increases

d.    sinθ = cos θ for all values of θ

e.    cot A is not defined for A = 0°

8.    Show that 

tan 48° tan 23° tan 42° tan 67° = 1

                      cos 38° cos 52° − sin 38° sin 52° = 0

9.    If tan 2A = cot (A− 18°), where 2A is an acute angle, find the value of A.

10.  If tan A = cot B, prove that A + B = 90°

11.  If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.

12.  Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

13.  Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

14.  : Write all the other trigonometric ratios of ∠A in terms of sec A.

15.  Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

16.    (sec2q -1 ) (1 - cosec2q )=……………

17.  cot2q–  1/ Sin2q = ............................

18.   Given that sinq =a/b , then cos q is equal to --------------------

19.   If sin q - cos q = 0 , then the value of (sin4q + cos4q) is …………….

20.        Eualuate(1 + cot q - cos q)(1 + tanq + sec q)


21.   If x = a sec q cos Ø  ; y = b sec q sin Ø and z = c tan q , then X2 / a2 + Y2 /b = ……………….

22.   If cosA +cos2 A = 1, then sin2 A + sin2A=

23.   Prove that sec 72/ cos ec18 + sin59/ cos31 = 2 

24.  If sin 2 q = √3 , find q

25.  Prove that cos q - sin q =√ 2 sin q,if sin q + cos q = √2 cos q

26.        Prove that (tanA+  secA- 1) / (tanA-secA + 1) = secA +  tanA

27.   If a cos3 q + 3 cos q sin2q = m a sin3q + 3acos2q sinq = n, 

28.   Prove that(m+ n)2 /3+ (m+ n)2/3= 2a 2 /3

29.        If 1 secq =  x + 1/4x   prove that sec q + tan q = 2x or 1/2x

30.  If √3 tan q = 3 sinq , evaluate sin2q - cos2q

31.        Prove the following identities : 1+ sec A/SecA =  sin2 A/1 - cos A

32.  Prove that :  1/ secq -  tanq      -  1/ cosq  = 1/cosq -1/ secq +  tanq

33.        Prove the following identity:

(sin A + cosec A)2 + ( cos A + sec A )2 = 7 + tan2A + cot2A.

34.        If  x/a cos = y/bsin      and 

ax/cos = by/sin = a2 –b2  prove that x2 /a2 + y2 /b2

35.   If cotA =4/3 check  (1 – tan2A)/ 1 + tan2A   =    cot2A – sin2A

36.   sin (A – B) = ½, cos(A + B) = ½ find A and B

37.   Evaluate tan5° tan25° tan30° tan65° tan85°

38.   Verify  4(sin430° + cos 460°) – 3(cos245° – sin290°) = 2

39.   Show that tan48° tan23° tan 42° tan67° = 1

40.   sec4A = cosec(A – 20) find A

41.   tan A = cot B prove A + B = 90

42.   A, B, and C are the interior angles of DABC show that sin(  B + C  )/2  =   cos  A/2                          

43.   In DABC, if sin (A + B – C) = √3/2 and cos(B + C – A) =1/√2, find A, B and C.

44.  If cos θ =   and θ + φ = 900, find the value of sin φ.

45.  If  tan 2A   =   cot ( A – 180 ),  where  2A  is  an  acute  angle,  find the value of A.

46.  If 2sin (x/2) = 1 , then find the value of x.    

47. If tan A = ½ and tan B = 1/3 , 

by using tan (A + B) =  ( tan A + tan B )/ 1 – tan A. tan B   prove that A + B = 45º

48.   Express sin 76° + cos 63° in terms of trigonometric ratios of angles between 0° and 45°.

49.   Prove that:  2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ  

50.   Find the value of θ for which sin θ – cos θ = 0

51.   Given that sin2A + cos2A = 1, prove that cot2A = cosec2A – 1

52.   If sin (A + B) = 1 and sin (A – B)=1/2  0o< A + B ≤ 90o; A > B, find A and B.

53.   Show that   tan 620/cot 280 =1

54.   If sin A + sin2A = 1, prove that cos2A + cos4A = 1.

55.   If sec 4A = cosec (A – 200), where 4A is an acute angle, find the value of A.

56.   Prove that (cosec θ – sec θ) (cot θ – tan θ) = (cosec θ + sec θ) (sec θ . cosec θ – 2)

57.   Given that A = 60o, verify that 1 + sin A =(Cos A/2  + Sin A/2)2

58.   If sin θ + cos θ = x and sin θ – cos θ = y, show that x2 + y2 = 2

59.   Show that sin4θ – cos4θ = 1 – 2 cos2θ

60.  If θ= 45o. Find the value of sec2θ

61.  Evaluate: cos60 o cos45 o -sin60 o sin45 o

62.  Find the value of tan15 o.tan25 o.tan30 o tan65 o tan85 o

63.  If θ is a positive acute angle such that sec θ = cosec60o, then find the value of 2cos2 θ -1

64.  Find the value of sin65-cos25 without using tables.

65.  If sec5A=cosec(A-36 o). Find the value of A.

66.  If 2 sin x/2  - 1 =0, find the value of x.

67.  If A, B and C are interior angles of ΔABC, then prove that cos (B+C)/2 = sinA/2

68.  Find the value of 9sec2A-9tan2A.

69.  Prove that sin6θ+cos6θ=1-3sin2θcos2θ.

70.  If 5tanθ-4=0, then find the value of (5sinθ - 4cosθ) (5sinθ + 4cosθ)

71.  In ABC, <c=90o, tan A= and tan B=<3.Prove that sin A. cos B+ cos A .sin B=1.

72.  In D ABC, right angled at B, if tan a =1/√3 find the value of Sin A cos C + cos A sin C.

73.  Show that  2(cos4  60 +  sin4 30 )-  (tan2 60  + cot2 45 ) + 3sec2 30 =1/4

74.  sin(50 +q ) - cos(40 -q ) + tan1 tan10 tan 20 tan 70 tan80 tan89 =1

75.  Given tan A =4/3, find the other trigonometric ratios of the angle A.

76.  In a right triangle ABC, right-angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.

77.  In D OPQ, right-angled at P, OP = 7 cm and OQ – PQ = 1 cm. Determine the values of sin Q and cos Q.

78.  In D ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:(i) sin A , cos A(ii) sin C, cos C

79.  If ÐA and ÐB are acute angles such that cos A = cos B, then show that Ð A = ÐB.

80.  If cot A= 7/8 evaluate: {(1 + sinA )( 1 – sinA)} / {(1+ cosA)(1-cosA)

81.  In triangle ABC, right-angled at B, if tan A = 1/√3   

find the value of :(i) sin A cos C + cos A sin C  (ii) Cos A cos C – sin A sin C

82.  In D ABC, right angled at B, AB = 5 cm and ÐACB = 300 Determine the lengths of the sides BC and AC.

83.  In D PQR, right – angled at Q, PQ = 3 cm and PR = 6 cm. Determine ÐQPR and ÐPRQ

84.  If sin (A-B) = ½ ,cos(A+B ) = ½   A+ B = o < A+ B ≤ 90,  A > B find A  and  B

85.  Evaluate the following: (5cos260 + 4sec230 -  tan2 45)/ (sin2 30 + cos2 30)

86.  If sin 3 A = cos (A – 26), where 3 A is an acute angle, find the value of A.

87.  Prove the trigonometric identities   (1 - cos A)/( 1 – cos A) = (cosec A – cot A)2           

88.  Prove the trigonometric identities ( 1+ 1/tan2A) (1 + 1/cot2A) =  1/(sin2A- cos4A)

89.  Prove the trigonometric identities  (sec4A – sec2A) = tan4A +tan2A = sec 2 A tan2  A

90.  Prove the trigonometric identities  cotA – tanA = (2cos 2A -1)/ (sinA.cosA)

91.  Prove the trigonometric identities. (1- sinA +cosA)2 = 2(1+cosA )(1 – sinA)

92.  If tanA +sinA = m and tanA – sinA=n show that m2 – n2 = 4 

93.   If x= psecA + qtanA  and  y= ptan A +q secA prove that x2 – y2 = p2 – q2

94.  If sinA + sin2A = 1   prove that cos2 A  + cos4 A =1

95. Express the following in terms of t-ratios of angles between 0° and 45°.

1)    sin 85° +cosec 85°

2)    cosec 69° +cot 69°

3)    sin 81° +tan 81°

4)    cos 56° +cot 56°

96. [sin (90 -A) sin A]/tan A-1 = - sin² A

97. cos  cos(90° -  ) -sin  sin (90° -  ) = 0

98. sin (90° -  ) cos (90° -  ) = tan  /(1 +tan²  )

99. cosec² (90° -  ) -tan²    = cos²(90° -  ) +cot²  

100.  If cos /cos  = m and cos /sin  = n, show that (m² +n²) cos²  = n².If x = r cos  sin , y = r cos  cos  and z = r sin  , show that x² +y² +z² = r².

1 comment:

  1. Trigonometry is an important part of Class 10 Mathematics and helps students understand the relationship between angles and sides of a triangle. In Introduction to Trigonometry | Class 10 EX 8.1 Question 2, students learn how to identify and apply basic trigonometric ratios correctly. Practicing this question improves conceptual clarity and builds confidence for board exam preparation.

    ReplyDelete

LinkWithin

Related Posts Plugin for WordPress, Blogger...